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Abstract

A novel blockchain design is presented, oriented toward inexpen-
sive, high-speed large-scale on-chain execution of microservices, espe-
cially (but not exclusively) those carrying out AI-related functions.
This ”Hypercycle” blockchain leverages Cardano’s Plutus smart con-
tract language (and underlying EUTxO model) and Hydra interfac-
ing framework, along with the TODA/IP ledgerless blockchain, the
TODA asset model, and SingularityNET’s Proof of Reputation sys-
tem. A Hypercycle network consists of a population of autonomous
agents each owning their own transaction history and accumulating
their own reputation, grouped together in rings in which they collab-
orate to execute consensus mechanisms enabling execution of EUTX-
O/Plutus based smart contracts. Hypercycle agents are constructed
as TODA files, complete with the TODA transaction and cycle trie
mechanisms for secure strongly decentralized management of file and
network history (the cycle trie being the inspiration for the name ”Hy-
percycle”). Consensus mechanisms involved in Hypercycle rings may
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be ledgerless or e.g. based on hierarchically sharded ledgers, depend-
ing on the particular requirements. The Cardano mainchain is used
via the Hydra interface to help provide certain sorts of security guar-
antees, and for ledger-based long-term backup storage of a selected
fraction of on-Hypercycle transactions. Brief discussion is given on
the particulars of Hypercycle customization to key application areas
like swarm AI, rating and reward in media networks, decentralized
payments and computer processing, and public/private chain interop-
erability. Integration of the OpenCog Hyperon frameworks’ MeTTa
programming language into Plutus is also envisioned, as a strategy for
enabling broad usability via the creation of MeTTa-based DSLs fo-
cused on smart contract programming in specific vertical areas. Such
DSLs may straightforwardly be presented to the user as low or no code
frameworks auto-generated from the underlying MeTTa/Plutus code,
effectively leveraging the Hypercycle framework behind the scenes.
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1 Introduction

In the time since the Bitcoin whitepaper was released in 2008, a variety of
different blockchain technologies and networks have been created, leveraging
similar underlying algorithms and data structures and in some cases signif-
icant evolutions thereof. New concepts such as smart contracts, DAOs and
Layer 2 networks have been added to the picture. It has also become clear
that there may not be end up being One Blockchain Network To Rule Them
All; rather, we may be facing an ecosystem comprising a decentralized net-
work of decentralized networks, the various networks each architected with
underlying mechanisms that combine roughly the same underlying math and
computer science in ways specialized to suit particular classes of use-cases.

The Cardano blockchain has been designed with this ”network of net-
works” vision in mind, and includes the Hydra framework which provides
powerful mechanisms for interfacing the Cardano mainnnet with other blockchains
[CCF+20]. The Hypercycle design leverages Hydra and also extends the cur-
rently publicly described version of Hydra in significant ways. Hypercycle in-
tegrates Hydra concepts with core algorithms and structures from the TODA
asset model [GGT19] and the TODA/IP ledgerless blockchain [ST19] , and
with the Proof of Reputation concept [AK21] developed for use within the
SingularityNET AI/blockchain network.

Part of the motivation for the Hypercycle design is the requirements of
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the SingularityNET protocol [Goe19] [GGH+17] [MG19]. SingularityNET is
a decentralized platform for communication and coordination between AI
agents and their users, originally implemented on Ethereum and now in
the midst of a port to Cardano. Cardano will massively increase perfor-
mance and decrease cost for SingularityNET operations; but the Cardano
infrastructure still imposes sufficient overhead to drive SingularityNET AI
agent design toward patterns in which individual agents carry out complex
AI processes internally, using the blockchain only for relatively infrequent
communications. Via radically decreasing the cost and increasing the speed
of blockchain transactions, Hypercycle will allow design patterns involving
lighter-weight AI agents interoperating more frequently. Of course these
improvements will come with some tradeoffs, which are acceptable in the
SingularityNET application context but would be unappealing in some other
applications.

One important class of use-cases for which Hypercycle is intended is
where:

• You have a large number of transactions that need to happen in a short
period of time

• You don’t necessarily need a rapidly checkable long-term record of all
aspects of all of them

• It may be OK if some correctness-checking occurs after the fact rather
than in real-time 1

While not the only class of situations Hypercycle can be applied to, it’s the
particular sort of use-case that has been most firmly in mind while developing
the design, and it is envisioned as playing a large role in shaping the initial
implementation.

1In the TODA asset model, which is heavily leveraged within Hypercycle, you can
”perform” any transaction you like, any time you want, even ridiculous completely made
up ones, but anyone looking at that transaction can completely verify its integrity, based
only on the information in the transaction’s proof of provenance. So no bad transaction can
provide evidence that it is a good transaction, and every good transaction has standalone
evidence proving its veracity to anyone who takes time to look. However, the transaction
may still take time to complete. The question then becomes, in a given application,
whether to accept a partially complete transaction or insist on a fully complete one before
proceeding.
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The Hypercycle design fulfills these requirements (as well as those of other
use-cases) via leveraging

• Plutus smart contracts, Hydra and other aspects of the Cardano system

• TODA/IP’s ability to coordinate a large number of secure blockchain
transactions without the necessity of maintaining any large replicated
ledgers

• The SingularityNET weighted liquid rank reputation system’s capabil-
ity to assess the contribution of an agent to a network and thus the
reliability of that agent to assist with various network functions.

The modest fees involved in Hypercycle network usage will come in three
denominations:

• HYPC tokens, native to Hypercycle network

• AGIX tokens to pay for the AI functionality required to maintain an
uncorrupted reputation system.

• ADA tokens to pay for the long-term storage of partial snapshots of
the Hypercycle network state, and the use of the Cardano network for
deposit-based security and conflict resolution

Rewards for helping with consensus in Hypercycle network will be given in
HYPC tokens. The AGIX and HYPC used here will be implemented as
Cardano Native Assets.

A Hypercycle network (as loosely depicted in Figure 1) comprises a col-
lection of ”rings”, each containing a set of Hypercycle agents, each of which
contains and controls a record of its own transaction history, and each of
which is able to enter into various sorts of relationships with other agents
(e.g. sending or receiving transactions, or participating in validating trans-
actions). Unlike in standard blockchains, and drawing key structures and
methods from TODA and TODA/IP (such as the TODA transaction trie
and the cycle trie that gave Hypercycle its name), in Hypercycle individ-
ual agents and their purposeful interactions are the core of the system –
no large-scale replicated ledgers are needed, and where they are used they
are best considered efficiency-oriented augmentations to the metadata that
agents retain regarding their own histories and properties.
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Figure 1: Conceptual illustration of two Hypercycle rings and their connec-
tion to the Cardano mainchain.

Each ring in the network performs its own consensus judgments, and con-
necting to the Cardano mainnet to which sends snapshots of a curated subset
of its judgments. Each ring contains a certain number of consistent validator
nodes (agents) that are heavily involved in validating transactions in that
ring, and other nodes that can be opportunistically pulled into the valida-
tion process based on various criteria. The validators in each ring act like
the participants in a multiparty state channel in a Hydra head. Participants
in a Hypercycle ring who are non-validators or opportunistic validators will
be like the participants in a Hydra ”tail” , though the particular design of
the Hypercycle ”tail protocol” may be different than the generic Hydra tail
protocol (which is not yet publicly well specified).

The SingularityNET reputation system, deployed among the nodes in-
volved in Hypercycle rings, provides a dynamically updated reputation mea-
sure to each node. Proof of Reputation means that the choice of validators
within Hypercycle rings will be biased toward higher-reputation network
nodes (who then get fees in Hypercycle tokens for helping with consensus
decisions)... Reliance on reputation in this way helps avoid various sorts of
attacks in a relatively straightforward and elegant way. To seed the repu-
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tation system we could e.g. give initial reputation boosts to AGIX or ADA
stakers, and also to early purchasers of Hypercycle tokens.

Different Hypercycle rings specialized for different purposes may use dif-
ferent consensus mechanisms, tuned e.g. for different balances of security
guarantees versus speed and cost of processing. Purely ledgerless consensus
may be used where looser security at the protocol level is permissible (with
certain types of security dependent on ADA deposits made by participants
on the Cardano mainchain, for instance) and fast cheap processing is critical.
Where maximal protocol level security is required then custom hierarchically
sharded ledgers may be deployed at the ring or ring-set level, adding both
cost and certain sorts of reliability.

Section ?? briefly reviews a few example applications ideally suited for
Hypercycle – swarm AI, rating and reward in media networks, decentral-
ized payments and computer processing, and public/private chain inter-
operability – and roughly indicates the sort of consensus mechanism and
Hypercycle/Cardano-mainchain interaction likely to be needed in each case.

The Hypercycle design also supports flexible public/private deployment.
Given a fully implemented Hypercycle, SingularityNET applications (along
with many other sorts of applications) will be deployable with subnetworks
on both public and private Hypercycle rings.

Finally, all this underlying complexity can nevertheless be presented to
application developers in a simple and usable manner, appropriate to the do-
main areas in which their applications are operating. Toward this end, inte-
gration of the OpenCog Hyperon [BGT21] framework’s MeTTa programming
language [Pot21] into Plutus is also envisioned, as a strategy for enabling
broad usability via the creation of MeTTa-based DSLs focused on smart
contract programming in specific vertical areas. Such DSLs may straightfor-
wardly be presented to the user as low or no code frameworks auto-generated
from the underlying MeTTa/Plutus code, effectively leveraging the Hyper-
cycle framework behind the scenes.

2 Background: Cardano, Hydra, TODA, Proof

of Reputation

In this section we review key aspects of the existing blockchain networks and
designs that are critical to the Hypercycle design. This review may seem
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like a bit of a wild ride, given that the ingredients being drawn together use
somewhat different terminologies and core data structures and processes, and
are largely coming from different directions conceptually. However, Section
3 will pull all the pieces together.

2.1 Cardano’s Foundation in the EUTxO Transaction
Model

2

Hypercycle involves a unique combination of mechanisms enabling effi-
cient, lightweight decentralized coordination of software processes; however,
key to the design is its piggybacking on the Cardano blockchain, which pro-
vides an extremely solid foundation for all aspects of secure, decentralized
software coordination. Hypercycle leverages the EUTxO model beneath the
Cardano blockchain and also the Plutus smart contract language and nu-
merous other related features, however substituting a different consensus
mechanism and a different system for data management.

Cardano’s Extended UTxO (EUTxO) model [Fou21] extends the stan-
dard UTxO model underlying Bitcoin in a manner explicitly designed to
support smart contracts operating according to functional programming prin-
ciples.

Transactions in a UTxO ledger contain a set of inputs and outputs, where
outputs lock an amount of cryptocurrency, such that only authorized inputs
of subsequent transactions can connect and consume those funds. The set
of outputs that are dangling (unconnected) pending validation, at any given
point in time, are the unspent transaction outputs (UTxOs) . In addition to
the locked currency, each output also comes with a validator predicate; and
each input comes with a redeemer value. To determine whether a given input
of the currently validated transaction is permitted to connect to a currently
dangling and unspent output, the software determines whether the validator
predicate the output applies to the redeemer.

The EUTxO model extends the UTxO model in two ways:

• Instead of restricting the validator/redeemer mechanism to dealing with
signatures, addresses in the EUTxO model can contain arbitrary logic
in the form of scripts. When a node validates a transaction, the trans-
action will look up the script provided by the output’s address and will

2This section largely contains information drawn from [Fou21] and [CCF+20]
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execute the script if the transaction is allowed to use the output as an
input.

• Outputs in EUTxO can carry essentially arbitrary data in addition
to an address and value. This allows scripts to carry, for instance,
information regarding the state of long-running smart contracts.

The script associated with a transaction can access the data being carried
by the output, the transaction being validated, and some additional pieces
of data called redeemers, which the transaction provides for every input;
based on this it can carry out complex logic to determine whether the given
input is permissible or not. The fact that the validator can inspect the entire
validated transaction enables validators to enforce that contract invariants
are maintained across entire chains of transactions.

Key to the EUTxO model is that the success or failure of transaction
validation depends only on the transaction itself and its inputs, and not
on anything else on the blockchain. This works naturally with the ”pure
functional programming” nature of the Haskell language which underlies the
Plutus smart contract system; in a pure functional language like Haskell,
computation is broken down into functions whose outputs depend only on
their inputs, without side-effect as are rampant in imperative language. The
functional nature of Plutus is the central aspect making Cardano smart con-
tracts tractably formally verifiable.

The purely functional nature of EUTxO validation also means the valid-
ity of a transaction can be checked off-chain, before the transaction is sent
to the blockchain. A transaction can still fail if some other transaction con-
currently consumes an input that the transaction is expecting; however, if all
inputs are still present throughout the period of execution, the transaction
is mathematically guaranteed to succeed.

The differences between this UTxO-based model and the account-based
models used in Ethereum and other similarly structured blockchains necessi-
tate significantly different design patterns on the DApp level. EUTxO makes
it much more tractable and straightforward to create DApps with provable
guarantees regarding their behavior; and EUTxO also provides a superior
foundation for powerful extensions to the core Cardano model like Hypercy-
cle. However, it does require a way of thinking about transactions and data
representation that feels initially unfamiliar to developers who got their start
with account-based blockchains.
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EUTxO smart contracts can be formally modeled using a type of state
machine called a constraint emitting machine (CEM). Based on Mealy ma-
chines, each one consists of a set of states Sc, a set of inputs i = Ic, a predicate
finalc : Sc → Bool identifying final states, and a step relation s → (s, tx),
which takes a state s on an input i to a successor state s? under the require-
ments that the constraints tx are satisfied. Cardano implements CEMs on
a EUTxO ledger (the mainchain) by representing a sequence of CEM states
as a sequence of transactions, each of which has a state-machine input ic
and a state-machine output oc, where the latter is locked by a validator ?c,
implementing the step relation (exceptions being the initial and final state,
which have no state-machine input or output respectively).

2.2 Hydra: Cardano’s Interoperability Solution
3

Hydra [CCF+20] is the algorithmic and software framework enabling
the Cardano mainchain to communicate efficiently and elegantly with other
blockchains. It supports implementation of what would informally be called
sidechains, and also of proxies to other fully autonomous and separate blockchains.

When Hydra is used to connect to another blockchain network, the ”head
parties” are a distinguished set of high-performance and high-availability par-
ticipants in this other network. ”Tail parties” are other participants in this
other network, who may be unreliable in terms of being online at any given
time or being computationally capable of carrying out operations critical for
decentralized network functioning. The Hydra architecture can be divided
accordingly into the head protocol, the tail protocol, and the cross-head-and-
tail communication protocol. These components are supported by additional
underlying protocols for routing, reconfiguration and virtualization.

The head protocol is the only portion of Hydra currently developed to a
state of reasonable maturity. It allows the heads parties in a blockchain net-
work connected to the Cardano mainchain to rapidly process large numbers of
transactions with minimal storage requirements by way of a multiparty state
channel. The tail protocol, which has not yet been publicly described in a de-
tailed way, enables the network heads to provide scalability for large numbers
of additional network participants who may use the system from low-power
devices, such as mobile phones, and who may be offline for extended periods

3This section draws mainly on [CCF+20] and [Kia20]
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of time. The cross-head-and-tail communication protocol leverages virtual-
ization to allow heads and tails to communicate without going through the
medium of the Cardano mainchain.

Hydra’s state channels are isomorphic to Cardano in the sense that they
make use of the same transaction format and contract code as the underlying
Cardano blockchain. This means smart contracts can be directly moved
back and forth between Hydra state channels and the Cardano blockchain
– so that Hydra state channels effectively yield parallel, off-chain siblings of
transactions on the Cardano blockchain.

2.2.1 Head Protocol Transactions

In terms of transaction management, what is happening behind the scenes in
using the Hydra head protocol to connect a network to Cardano mainchain
is: The head parties involved cooperate to commit a set of UTxOs comprising
the initial head state, which these head parties then evolve by handling smart
contracts and transactions among themselves without mainchain interaction.
Transaction validation, including script execution, proceeds according to the
exact same rules as onchain, leveraging the exact same validation code. In
case of disputes or in case some party wishes to terminate the offchain pro-
tocol, the head parties decommit the current state of the head back to the
blockchain - which then necessarily results in an updated blockchain state
that is consistent with the offchain protocol evolution on the initially commit-
ted UTxO set. The mainchain doesn’t need to know the detailed transaction
history that led to the committed state, it only. needs to know the commit-
ted state. Further, the decommit process is designed such that, when the
latest state in the head is very large, the head state can be decommitted via
parallel decommitment of small chunks. UTxOs can also be added to and
removed from a running head without closing it.

To get a Hydra head started, any party may take the role of an initiator
and ask a set of parties to participate. Each party then establishes pairwise
authenticated channels to all other parties in the head. This public-key ma-
terial is used both for the authentication of head-related onchain transactions
that are restricted to head members and for multisignature-based event con-
firmation in the head. The initiator then submits an initial transaction to the
mainchain that contains the head parameters. This automatically initializes
a state machine for the head instance that manages the transfer of UTxOs
between mainchain and head.. Each head member then attaches a commit
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transaction, which locks on the mainchain the UTxOs that the party wants
to commit to the head.

From this point on, the head enters into an open state The head members
continue running the offchain head protocol, which evolves the initial UTxO
set independently of the mainchain. In the case that some head members
fail to post a commit transaction, the head can be aborted by going directly
from initial to final.

Once a head is in the closed state, the underlying state machine grants
parties a contestation period, during which each head party has one chance
to contest the closure by providing the certificate for a newer head UTxO
set. Contesting leads back to the state closed. After the contestation period
has elapsed, the state machine may proceed to the final state.

What’s happening on the mainchain while a Hydra head is evolving of-
fchain is that the mainchain Hydra protocol:

1. Upon head initiation, locks the mainchain UTxOs committed to the
head

2. Keeps these locks and waits while the head is active

3. Facilitates the settlement of the final head state back to the mainchain
after the head is closed.

The end result is a dynamic that replaces the initial head UTxO set by the
final head UTxO set on the mainchain in a manner that respects but does
not persist the complete set of head transactions.

Some careful record-keeping is required here behind the scenes, in order
to ensure that each head member posts exactly one commit transaction and
that the open transaction faithfully collects all commit transactions. To en-
able this, a single non-fungible ”participation token” is issued to each head
member, connoting a capability and obligation to participate in the head
protocol.. This token must flow through the commit transaction of the re-
spective head member and to be valid the open transaction must collect the
full set of participation tokens.

2.2.2 Hydra Tail Protocol

The Hydra head protocol has many powerful use-cases on its own. For in-
stance, a natural strategy for porting the SingularityNET marketplace to
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Cardano is to map the multiparty escrow contract in the Ethereum-based
SingularityNET implementation into a Hydra head. The SingularityNET
agents participating in the multiparty token and API access transaction are
then the head parties and the head instance remains active until the escrow
is cleared and the multiparty transaction is done.

However, if one wants to associate a sizeable external network with Car-
dano using Hydra as the interface in a ”sidechain” like design pattern, it’s nec-
essary to also handle the situation where there are many participants in the
sidechain that are intermittently online or have unreliable or minimal com-
putational power. This situation leads to a variety of security challenges, as
there are various scams a network participant can carry out more effectively
when not required to be consistently online to participate in transactions.
The Hydra Tail protocol [Kia20] has two key mechanisms for addressing
this:

• requiring participants to put collateral on the mainchain, which will be
lost if fraud is attempted

• instantiating a Challenge-Response-Protocol on the mainchain, with
which clients can dispute claims by any participant

As will be elaborated in Section 3 below, this is one aspect of the Hydra tail
protocol that is improved in Hypercycle, via leveraging Proof of Reputation
and TODA/IP mechanisms. Given Hypercycle’s particular requirements and
the underspecification of the Hydra tail protocol, the approach we’ve taken in
the Hypercycle design is to create a custom version of the Hydra tail protocol
that suits Hypercycle’s needs, incorporating mechanisms and ideas beyond
those that have previous occurred in the Cardano sphere.

2.3 The TODA/IP ledgerless blockchain

TODA/IP [ST19] is a protocol for secure communication and coordination in
decentralized networks, which relies on the same underlying data structures
and encryption mechanisms as standard blockchain platforms, but combines
these in a radically different way to enable tremendously greater scalability.

The most obvious distinction between TODA/IP and other blockchain
systems is that TODA/IP is fundamentally ledgerless – there is no essential
dependence on any distributed or replicated ledger. Rather, each record
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managed by the network independently records its own transaction history.
One could then say that the ledger exists implicitly within the network of
file transaction records, to be partially spidered by various processes on an
as-needed basis. A crude metaphor to traditional blockchain architectures
would be to say that in TODA/IP the ledger is ”sharded all the way down”
(though of course the underlying mechanisms are not precisely that).

TODA/IP significantly bypasses well known problems w/ replicated ledgers,
such as

• Coordination overhead associated with distributing information from a
large network to a number of replicated ledgers

• Communications overhead required for sending, receiving, and process-
ing messages (e.g. according to gossip protocols which, while resilient,
are known for their considerable communications overhead)

• Decreased performance with scale. Replicated ledgers require that ev-
ery fully participating node must process every single transaction which
occurs. This means that as more transactions occur, and more nodes
participate, overall transaction times suffer severely. This type of pro-
tocol offers security, neutrality and censorship resistance at the cost of
scalability.

Basically, in typical replicated ledger blockchain systems, every peer receives
all transaction data, all hash reference values, and all block headers. Every
node needs to be supplied with enough information to be able to re-create the
entire chain. This is how blockchain explorers are able to provide browsing
through the history of major blockchains.

Sharding palliates all these problematic factors, but only partially. To
make sharding work really well requires hierarchical sharding architectures
which give algorithmically more satisfactory performance but at cost of adding
significant complexity and overhead. TODA/IP is in some ways similar in
spirit to sharding, but keeps things simpler and lower-overhead by adopt-
ing a more fully decentralized approach, in which each local data-chunk is
responsible for its own historical information (or in some cases that of its
close neighbors). This changes the nature of the communication protocols
a fair bit, but removes the main source of complexity and cost in ledger-
based blockchains, which is the maintenance of a population of ledgers each
storing broad-based information about the network as opposed to simply a
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population of inter-transacting agents each with their own local data and
interests.

A network that is ledgerless in its foundational operation can still make
use of ledgers when appropriate. For instance if one wants a rapidly search-
able backup of a certain subset of network transactions, storing all these in a
replicated ledger makes a lot of sense. Hypercycle makes use of the Cardano
mainchain for this purpose, along with other purposes like help maintain-
ing certain sorts of security guarantees. As will be elaborated in Section
3, Hypercycle runs most of its transactions independently of Cardano main-
chain, leveraging TODA/IP and Proof of Reputation mechanisms along with
Cardano’s EUTxO model and smart contracts to achieve scalable secure de-
centralized ledgerless computing. But then a judiciously chosen subset of
Hypercycle transactions are periodically snapshotted and pushed to Car-
dano mainchain where they will be stored in Cardano’s replicated ledger for
backup, and rapid search and access.

It is also possible to use TODA/IP together with hierarchical sharding,
when one wants to achieve particular sorts of balance between security guar-
antees and performance. In this case the overhead of sharding is still there,
but is significantly less than in cases where a sharded ledger is required to
do all the work.

2.3.1 TODA/IP Transaction Processing: Decentralized and Lo-
calized

The core structural element of TODA/IP is its association of individual
records with their own localized ledgers. This makes these records semi-
autonomous agents in a sense that is not remotely the case for entries stored
in the ledger of a traditional distributed/replicated ledger-based blockchain.

The core dynamical aspect of TODA/IP, correspondingly, is the way se-
cure transaction processing occurs in a manner that is wholly decentralized
and is also ”localized” in the sense that it doesn’t require access to any
overall ledger of all transactions that have ever occurred in the blockchain,
but requires only interaction of a small set of parties who are closer to the
transaction at issue. In this dynamics, records are acting as ”nodes” in a
blockchain network – specifically, each record may correspond to a number
of different nodes, each acting in a different portion of the tree.

Let us now briefly unpack how this works, in a simple case of a ring with
a ”plain vanilla” fully-replicated-ledger-less TODA/IP consensus system.
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Given a record R owned by wallet A, that record can be sent to wallet B
through the generation of a transaction request, which is signed by wallet A,
then signed by wallet B, then distributed and signed by a set of validators.
A cycle in TODA/IP consists of a round of transactions requests and ensuing
validations (for those requested transactions that are valid).

But how are the validators chosen? In the simplest TODA/IP implemen-
tations, basically, any active device that is geographically dispersed may be
chosen as a validator. A pseudorandom function is used to select devices in
the network for participation in a computation validating a given transac-
tion, based on their geographic dynamic disbursement. Devices cannot apply
more computation than the modest amount required for the pseudorandom
selection of work that is assigned to them in each block of time ? an amount
of work that cannot be known in advance, but is fixed immutably the moment
it is assigned.

Because there is no way to achieve extra privileges in the network via
extra work, there is no intrinsic need for “mining farms” or similar mecha-
nisms. Also, while this approach enables economical incentives for devices
to be on the network, it requires no disincentive for not participating in the
computation. The amount of work involved here is independent of the size
of the network; and the work is spread out through the system, rather than
concentrated as it would be in typical replicated ledger-based blockchains.

Each validator provides four important functions:

• Confirming the validity of the transaction (structural soundness and
proof correctness)

• Prevent sending a packet twice in this cycle

• Help build the consensus proofs for the transaction

• Provide matching proofs for A and B

One of the validators will also be chosen to create a new record containing
the signed transaction validation message the validation process returns to
the recipient. This new file will then be sent from the chosen validator to
itself, resulting in the appending of this file to the validator’s record.

After the transaction is done, the Merkle root of the data structure con-
structed as the transaction proceeds is a cryptographically secure represen-
tation of the entire transaction.
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It makes logical sense for a TODA/IP-based network to charge modest
transaction fees to cover the network, electricity and depreciation cost of
carrying out the work involved in transaction validation. These fees would
be naturally split among sender, recipient and validators, in a manner that
may be different for different TODA/IP implementations. There are obvious
variations such as preferentially assigning the validator role (and the modest
revenue obtainable therefrom) to nodes that have provided rapid validation
in the past. This leads on to the integration of TODA/IP with reputation
systems that we will discuss in Section 3 below and that forms a key aspect
of the Hypercycle design.

The nodes in a TODA/IP network may be divided into ”rings”, each of
which groups a certain set of records, and which are hierarchically connected.
A single record can then live in multiple concentric rings. Different rings can
have different consensus mechanisms for approving transactions. Transac-
tions made to the record in different rings can then be merged consistently
within the record.

A TODA/IP system may hold a collection of rings, what we might call a
”ring-set”, can be configured to all share a common ”TODATree” (fully sat-
urated and balanced BST) structure, which provides a universal file address
system that may roughly be thought of as a decentralized analogue to IPV6.
In the context of a TODATree, each record has a unique address number that
it retains over its lifetime, defined via the branch of the TODATree it occu-
pies. A highest level TODATree of height 256 has been posited to supervene
over all TODA/IP implementations, with each of the 296 branches at level
160 associated with a particular TODA/IP implementation. Hypercycle will
then involve a TODA/IP ring-set associated with a particular TODATree
level 160 subtree.

2.3.2 TODA: Interoperable Proof Structures

While TODA/IP is a full ledgerless blockchain system, TODA simply de-
scribes a data structure.4 The core of the TODA design is the ”TODA File”,
which essentially is a digital data file that comes along with a per-file ledger
attached as metadata. The binding between a file’s internal data and its
ledger allows a file to behave like a ”unique digital object” (a sort of NFT)
rather than a more abstract, interchangeable symbolic token.

4This section is based on [GGT19]; later designs supersede this but are generally com-
patible with it.
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Every transaction that a file is involved with causes a corresponding
record to be attached to the file’s associated ledger. These transaction records
contain among other information the addresses of the other parties involved
in the various transactions. The functioning of TODA is founded on the
way these transaction records enable each file to have a single canonical well
formed proof of provenance.

The transaction detail describing a particular transaction for a particular
file specifies several aspects such as:

• the destination address: who will become the new owner

• a metadata hash, which allows users to attach arbitrary metadata to
the transaction

• an encumbrance, which is a special restriction on how the transaction
will occur

• a signature on this data, to certify that the current owner really wishes
the transaction to occur

The transaction detail becomes an intrinsic part of the proof of a file. By
only requiring the hash of the metadata to be included in a transaction, the
size of proofs is kept under control, and users are given the power to choose
not to share the metadata of a transaction with someone else.

These qualities provide TODA files with the ability to move transparently
between rings, regardless of the consensus mechanisms or networks involved,
provided only that the capacity to create corresponding structures exists.
This allows records that make use of these data structures to interoperate
natively across unrelated systems.

2.3.3 Key TODA Data Structures and the TODA Cycle

Operation on a TODA file depend centrally on two Merkle trie data struc-
tures: The File Trie and the Cycle Trie. Explicating how these tries work
is the best way to go to the next level of detail in the description of TODA
operations.

The file trie is a Merkle trie which associates file IDs with transaction
detail hashes for transactions involving that file. A transaction proof is the
Merkle proof associating a single file detail with a file ID. The transaction
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details associated with a file’s ID by its owner’s file trie are the only valid
representation of operations on that file.

The file trie for a given address in a given cycle contains all of the oper-
ations performed over files owned by that address in that cycle. Files owned
by that address that are not present in that file trie for that cycle are said to
have null proofs. Because the transaction details referenced in the transaction
proofs associated with a file are the only valid representation of operations
on a file, a file with a null proof is demonstrably not operated on within the
context of the file trie.

Each file trie is contained within a cycle trie. The cycle trie can be built
in a highly distributed way using e.g. TODA/IP, as we describe below, but
it can also be built in a fully centralized setting, or something in between.
The values contained in this cycle trie are nothing other than the file trie
Merkle roots corresponding to the transactions occurring in the cycle. Each
file only requires the small slice of the overall cycle trie that contains it.

As the cycle proceeds, the Merkle trie is built containing proofs for each
transaction. For a given transaction its two proofs (one from the sender, one
from the receiver) will be known only to the sender and the receiver, but all
are part of the cycle trie.

Not all nodes in a ring, in general, will be available to participate in a
given cycle. However, cycles in any ring that a file belongs to are relevant
to that file whether the node corresponding to that file is transacting in that
cycle or not. In order to be able to continually prove that your file’s ledgers
are complete and not missing any information, you need to collect a bit of
data every cycle that contains proof that your address did not contribute to
the cycle. Luckily, these trimmed proofs tend to be especially short.

A protocol-level way to deal with these zero-transaction proofs is to say
that the nodes assembling the cycle trie during a given cycle are responsible
for maintaining proofs of their non-participating neighboring nodes (where a
”neighbor” is a node that a given node has transacted with before). As many
neighboring nodes who didn’t contribute to a cycle will generally share the
same proof, this is a relatively trivial set of data to maintain. There are also
other routes to managing these proofs which are more at the service level,
i.e. specific rings may maintain specialized ledgers or other mechanisms for
managing these proofs that in some contexts may provide greater efficiency
than relying on neighboring nodes. For instance, with sufficient trickery it
may be possible to store ”proofs of null proofs” together with cycle roots
without actually storing whole cycle tries; there is some research yet to be
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done in this direction.

2.4 Proof of Reputation
5

The final key ingredient woven into the Hypercycle design is the ”Proof
of Reputation” consensus mechanism that was incubated within Singulari-
tyNET by a team led by Anton Kolonin and fleshed out fully in collaboration
with Oladotun Aluko [AK21].

SingularityNET’s ”weighted liquid rank” reputation system [KGDI18] is
a general mechanism for assigning reputation to members of a decentralized
network, integrating implicit and explicit ratings, and incorporating various
subtleties such as adjusting the effect of member A’s impact on member
B’s reputation based on member A’s reputation. The length of a network
member’s history, the amount of currency they have spent, the predictive-
ness of their own ratings, and many other factors can play into reputation
calculations. The framework also includes a role for machine learning driven
”reputation integrity analysis” agents to identify potential reputation fraud.
Several simulations of the use of weighted liquid rank in various situations
have been implemented and evaluated, e.g. reputation in ecommerce mar-
ketplaces [KGP+19].

The core idea of Proof of Reputation (PoR) is to use weighted liquid
rank based reputations as the basis of a consensus mechanism for blockchain
networks. The PoR framework uses the interaction of nodes in a network over
time to determine the amount of reputation associated with each node in the
network. A node’s reputation is calculated by blending together a normalized
set of ratings and the corresponding reputation values of the node providing
the rating at a given point in time, rather than simply the value of the direct
rating given by other nodes. A node’s behavior also directly influences its
overall reputation value by appropriate formulae. The PoR mechanism then
uses the reputation to determine a set of consensus nodes responsible for
maintaining the network’s shared state. Reputation values are ongoingly
updated as interactions between nodes in the network progress over time.

A few of the core principles underlying this scheme are:

• . The reputation value computed for a node is based on the reputation
value of the node providing the rating – this is the ”liquid” aspect

5This section is based on [AK21]
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• The temporal scoping of reputation, according to which reputation val-
ues accumulated by members in the longer past contribute less to the
current reputation value (while at the same time allowing agent history
to contribute appropriately to reputation)

• The openness of all reputation values to all members of the community
so that audits can be performed.

In accordance with principles of openness and decentralization, PoR stores
node reputation values on a sidechain rather than in a centralized database.
In a Hypercycle context, this ends up meaning that each Hypercycle net-
work spawns a side Hypercycle network managing the reputation values for
the parent Hypercycle network. This doesn’t spawn an endless recursion be-
cause the nodes in the child network (containing reputation values) have the
same owners as nodes in the parent network, so the consensus mechanism in
the child mirrors that in the parent.

At the start of every PoR consensus round, consensus group members
need to be selected and added into a consensus group. Members of the con-
sensus group are chosen from the nodes with the highest reputation values,
e.g. with collective reputation scores that exceed 50% of the total reputation
values of the network. A leader from the group is then selected, who serves
the functions of:

• Packaging all valid transactions from the list of pending transactions
to a block

• Calculating the new reputation values for all network nodes using data
from transactions in the transaction list

• Broadcasting the commit message to the consensus group

To verify a transaction, the consensus group waits until a certain min-
imum number of of consensus members has sent a confirmatory message.
This process constitutes a consensus group vote, in which each node has a
weighted vote proportional to its reputation value from the previous round.

This general mechanism is consistent with a variety of different underlying
blockchain architectures, e.g. it could be used with account-based, UTxO or
EUTxO frameworks. Hypercycle layers PoR based consensus into a system
based on EUTxO and TODA, resulting in a non-replicated-ledger-dependent
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blockchain framework supporting powerful functional-programming smart
contracts but incorporating the particular security that PoR brings against
various sorts of attacks.

3 Hypercycle

Hypercycle is a novel blockchain architecture which is formed by assem-
bling key pieces from the existing blockchain networks and designs reviewed
above: Cardano (EUTXO/Plutus/Hydra), TODA/IP, TODA, and PoR. The
”assembly” process involved is not entirely straightforward, however, and re-
quires some modifications and extensions to all of the ingredients. The result
of this process is a blockchain with unprecedented capability for handling
high-speed, large-scale on-chain agent interactions such as is required for on-
chain deployment of population-based AI algorithms, tokenomics-powered
interactive media, and numerous other applications.

The strongly modular design of Hypercycle and all its components also
makes it relatively straightforward to extend various portions of the system,
for instance the smart contract language. The MeTTa (Meta Type Talk)
language [Pot21] under development in the context of the OpenCog Hyperon
AGI project [BGT21] has a number of properties that make it favorable for
the development of application-specific smart-contract DSLs. Toward this
end we envision making MeTTa accessible as a framework within Haskell
(as it will be made available within e.g. python and Julia for AI scripting
purposes), so that e.g. finance-focused, medicine-focused or evolutionary-
learning-focused smart contract languages for on-chain execution could be
scripted in MeTTa and then run via Plutus. It will then be possible to
create generic tools for mapping MeTTa DSLs into appropriate low or no
code development UIs, resulting in a HyperCycle framework with a high
degree of usability for developers working in niches for which DSLs have
been created.

3.1 Core Hypercycle Architecture Concepts

The Hypercycle network is a population of ”agents” which correspond to
TODA files and which are able to execute transactions using Cardano’s EU-
TXO mechanisms (for instance they are able to run Plutus scripts). Each
agent has an owner, and one owner may control multiple agents. The agents
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are organized into TODA-style rings, and a given TODA file may correspond
to multiple agents living within different rings. As usual with TODA, each
ring may have its own particular consensus mechanism.

Fees for Hypercycle transactions are paid in HYPMC, ”Hypercycle Mul-
tidmensional Currency.” Each HYPMC token contains a portion of ADA, a
portion of AGIX, and a portion of HYPC. Different HYPMC tokens may
contain different weightings among the components. AGIX and HYPC are
utilized here as Cardano Native Assets, so that HYPMC can be managed
straighforwardly via Plutus smart contracts.

Each Hypercycle ring is associated with the Cardano mainchain via Hy-
dra. Each ring has its own policy determining which of its internal transac-
tions gets pushed back in snapshots to Cardano mainchain, and how often
these snapshots are pushed back.

Agent reputations and agent-owner reputations are calculated dynami-
cally via a weighted liquid rank reputation system that operates at the over-
all Hypercycle network level. Three dimensions of reputation are maintained
for each agent: Reliability, cooperativeness and honesty. An agent with poor
uptime or slow processing may be rated unreliable even if it has never done
anything fraudulent or problematic. An agent with strong technical proper-
ties may still refuse to participate in constructing proofs, which will merit it
a low cooperativeness rating, but this is still important to distinguish from
a fraudster agent which will get a low honesty rating.

Use of reputation and social connectivity dynamics should in many cases
enable dynamic evolution of Hypercycle rings, and in rings that use hierar-
chical sharding (to be discussed below), potentially of shards as well.

Each ring, in each cycle of its operation, has certain cycle head parties and
certain cycle tail parties, in the rough sense of the Hydra protocol. Agents in
the ring with high reliability, cooperativeness and honesty may be thought
of as essentially the same as conventional Hydra head parties. Any member
of the ring who wants to participate actively in consensus during the next
cycle can broadcast a message saying so, and will then be considered as a
cycle head for the next cycle.

As compared to how Hydra currently operates, for use with Hypercycle
we will need Hydra to be a little more flexible in terms of how consensus
is achieved. Currently Hydra requires all head parties to explicitly agree in
order to confirm a transaction, in the manner of a standard multiparty state
channel. In Hypercycle, instead, things will proceed more like in TODA/IP,
but with reputation-based weighting. Validators for each transaction pro-
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posed within a cycle will be chosen via a pseudorandom function from among
the agents in the ring who have proposed themselves as cycle head parties.
Preference will be given to those proposer agents with stronger reputations.

This modification to Hydra proposed for use with Hypercycle has similar
intention to the Hydra tail protocol, but is likely different in some partic-
ulars from the tail protocol as currently being pursued within the Cardano
community. Collaborative development in this regard will likely be very pro-
ductive.

3.2 Hypercycle Consensus Mechanisms

3.2.1 Lightweight Rings

The simplest sort of Hypercycle ring is what we call a ”lightweight ring,”
which is wholly ledgerless in the manner of the ”simple TODA/IP ring”
roughly described in Section 2.3 above. This sort of ring lacks certain sorts
of strong security guarantees, as is discussed in Section 3.2.3 below. However
this is compensated significantly via security at the service level. Agent-
owners participating in a lightweight ring are required to post a certain
amount of ADA and AGIX as deposits on Cardano mainchain. If dishonest
or uncooperative behavior on the part of an agent is discovered, this can
result in loss of all or part of the owner’s deposit.

The ”lightweight ring” consensus mechanism is not adequate for rings
involving individual transactions of huge financial value, but is well suited
for rings oriented toward micro-transactions. Examples would be:

• AI agents that are participating in population-based AI algorithms like
genetic algorithms, genetic programming, ensemble machine learning,
swarm AI

• Small-scale tokenomic transactions such as rating articles or comments
on a tokenomics-enabled media site

• Small-scale financial micropayments for any purpose

3.2.2 Hierarchical Sharding Enhanced Consensus Mechanisms

For cases where a greater level of protocol-level security and reliability is re-
quired, rings with alternative consensus mechanisms are needed. For instance
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one may create a ”hierarchical sharding enhanced ring” (HS enhanced ring),
in which the basic localized transactions between agents are supplemented
by a hierarchically sharded ledger which contains proofs corresponding to the
ring.

This Hypercycle ring level HS ledger is distinct from the Cardano main-
chain ledger, and most of the time most of the information it contains won’t
end up getting pushed to Cardano mainchain, because it will make more sense
to send mainchain snapshots of actual transactions that happened rather
than snapshots of , for instance, zero-transaction proofs for numerous agents
in each cycle.

The HS ledger may be used in various different ways, yielding multiple
variations of the HS consensus mechanism. One option is to use the HS
ledger purely as a backup, in case the more fully decentralized peer-to-peer
approach used in the lightweight consensus mechanism fails. This allows
guarantees beyond what is possible with the lightweight consensus, but in
the case where the agents in the ring are mostly effective and cooperative, it
only modestly increases operational cost and speed.

Another option is to use the HS ledger more aggressively. E.g. if zero-
transaction proofs are stored in the HS ledger then there’s an option to omit
them from file metadata, thus keeping proofs smaller. However this has risk
to significantly increase the time cost of doing proofs because of the need for
agents to download relevant portions of the HS ledger every time they do
proofs. The severity of this issue will depends on the habitual distributions
of the inter-agent transactions in the network – in particular, on the degree
to which the transactions among the parties in the ring fall into a hierarchical
statistical pattern that can be reflected in the hierarchical sharding structure.

Broadly speaking, the use of the HS ledger provides greater security
against various sorts of attacks, and thus an HS ring is going to be appro-
priate for agents carrying out larger, less micro-level/disposable transactions
than those appropriate for a lightweight ring. However this added security
will come at an added performance cost – which can be reduced via clever
design and efficient implementation, but will often remain a significant factor.

One general principle we see in these aspects of the HS consensus mech-
anism is that the TODA design providing core elements to Hypercycle does
not obviate the key tradeoffs underlying all blockchain design, such as the
performance versus security tradeoff – but does provide a framework in which
various different tradeoff choices appropriate for different applications can be
elegantly inserted, via use of ring-specific consensus mechanisms associated
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with their own auxiliary data structures and dynamics building on the core
Hypercycle mechanisms.

3.2.3 Further Notes on Security, Reliability and Performance Trade-
offs

In this section we dig a little more deeply into the technical tradeoffs involved
in the choice between the lightweight and HS ring consensus mechanisms
described above. The discussion may also shed a bit of a broader light on
some of the tradeoffs involved in choosing a lightweight ring versus a heavier
ring for a particular application.

Incentivizing Agent Participation in Consensus Firstly, one key ques-
tion underlying the operation of a ring under the lightweight consensus mech-
anism is: What incentivizes agents to contribute the knowledge they possess,
which is necessary for other agents’ in the proof construction process they
need to undertake to construct the Cycle Trie? In some cases this is not a
relevant question, e.g. if all the agents in the ring are strongly externally
incentivized to contribute to the overall outcome of the process the ring is
carrying out (e.g. AI agents collaborating to solve a problem of mutual in-
terest to all the agent owners). But in other cases the rapid cooperation
of agents in providing distributed data to feed proofs to form the cycle trie
could be a potential critical bottleneck for lightweight consensus operation.

The basic answers to this question are: payment and reputation. The
network design involves modest transaction fees and some of these can be di-
rected to agents providing necessary proof data for cycle trie formation. Also,
maintaining acceptable ongoing reputation will be necessary for agent-owners
to continue participating in Hypercycle networks. While low-reputation
agent-owners may always try to re-enter the network using a different iden-
tity, there will be machine learning driven ”reputation police” mechanisms
designed to spot this sort of behavior. Further, agents with higher reputation
are more likely to be chosen to participate in consensus and thus are more
likely to profit from their participation in the network ongoingly. One can
also juice up the benefits of having high reputation even further by making
transaction fees lower for high reputation agents, so that agents have a direct
financial incentive for playing nice.

Another possible mechanism, to be introduced with great care and only
in particularly appropriate sorts of applications, is to allow sufficiently high
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reputation agents to add transactions to the cycle trie even if they don’t have
all the necessary proof data at hand. This is not a route one would want to
take in a network hosting large financial transactions, but in a ring comprising
AI agents acting cooperatively to solve problems together on-chain, it may
be perfectly acceptable.

Payment and reputation are ”soft incentives” rather than hard protocol
guarantees, so in the lightweight consensus scenario there is still a possibility
that some agents will simply refuse to provide data that they hold locally, and
eat the reputation loss. In this case, the Hydra conflict resolution mechanism
will be invoked, and the agent-owners involved will lose all or part of the
deposits they have made on the Cardano mainchain. But there’s a possibility
that some transactions will not be able to happen.

Costs and Benefits of HS Enhanced Consensus The HS consensus
mechanism sketched above is, in a sense, a hybrid between the fully ledger-
less TODA/IP system and a more traditional ledger-based blockchain with
hierarchical sharding (see e.g. [CDD+19] for a fleshed-out description of hier-
archical sharding in the Thinkey blockchain, but many other examples exist).
In this case we have information which, ideally, everybody in a ring should
have (with consensus): the cycle roots of the TODA/IP system. In the
HS approach we increase the odds of achieving this ideal by increasing this
common information a bit beyond what’s there in the lightweight consensus
mechanism. All head parties in a ring still construct the data structures for
the record. But along with building the cycle tree, the non-zero transaction
packets are added to the hierarchically sharded ledger. This system has al-
most the same level of privacy as in the lightweight consensus protocol (from
common information it will be impossible to infer who owns items). But it
automatically solves the two requirements mentioned above, and dramati-
cally reduces the proof sizes (since proofs for zero transactions will not be
required in proofs of provenance).

The big downside of the HS approach is that, in order to guarantee its
ability the needed proof for any file received, an agent needs to be able
to download the relevant portion of the HS ledger. In the worst case it
needs to download the whole ledger, which could become huge as the system
grows. On the other hand, if the transactions in the network have a strong
tendency to be localized, so that most transactions occur between agents
in the same small shard, then this may be only a moderate-sized problem.
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Still, at least in unfavorable scenarios, the HS consensus mechanism loses the
lightweight consensus mechanism’s favorable property of accelerating rather
than decelerating as the number of network participants increases.

Two Strong (But Optional) Requirements One way to think about
the value added by the HS approach (or other similar mechanisms) is to look
at the following two requirements, both of which are clearly desirable for
maximal network security:

1. If a user adds a non zero transaction then this transaction can make its
way to the final ?cycle root? (cycle root for which we have consensus)
if and only if user has merkle proof for this transaction. It means
that it is not possible by design to fail (because of network error or
intentionally) to send the element of merkle proof to the user.

2. Users should always be able to reliably recover all cycle roots and all
merkel proof for all zero transactions.

In a ”low security margin” ring, such as one using the lightweight con-
sensus mechanism outlined above, we can have nonzero probability of failure
for these two properties. On the other hand, it is difficult to see how one
would satisfy the second requirement in particular without doing something
roughly ”decentralized ledger like” – i.e. without having decentralized con-
sensus about proofs of zero transactions, and making these available for ev-
erybody. The first requirement is in some way trickier but is also less complex
to address in ledger-like scenarios.

However, it is not a given that these requirements must necessarily be met
in all rings via guarantees at the protocol level. Maximizing security guar-
antees generally also maximizes cost (computational and otherwise), which
limits the scope of potential use cases. Bitcoin is currently primarily con-
cerned with the use-case of transacting large quantities of speculative assets,
and for this purpose a decentralized ledger based approach is relatively apro-
pos. But other sorts of use-case, e.g. in agent-based AI or social media or
micropayments, have dramatically different sets of requirements which point
toward different trade-off choices, and some of these choices may sensibly
involve giving up some protocol-level security guarantees in pursuit of per-
formance or other beneficial aspects.
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Defusing the Power of Forking It’s also worth noting that essentially
every TODA/IP-based system will possess, by design, certain sorts of secu-
rity that elude all modern decentralized ledger-based systems – for instance,
security against the chaos and economic perversity habitually incurred by
blockchain forks. All too often the fallback solution to a major security is-
sue in a ledger-based blockchain is ”we can always fork the chain.” This has
worked disturbingly well for various cryptocurrencies on a financial basis. For
instance, the results of the Bitcoin forks leading to Bitcoin Cash and Bit-
coin SV, and the Ethereum fork leading to Ethereum Classic, were broadly
profitable: Both pre and post fork tokens retained significant financial value,
so that the forks increased the market caps of the underlying blockchains.
However, in other cases the ability to fork in this way is highly undesirable;
for instance real-world assets like loyalty points, fiat, video game assets, etc.
The fundamental uniqueness of TODA/IP records obviates the power of this
sort of forking. In a Hypercycle network with HS consensus, forking the HS
ledger still doesn’t fork the records underlying the Hypercycle agents. There
can of course be software upgrades but there is no structural bias for these
to lead to perverse forking situations as seem to routinely occur with today’s
standard distributed ledger-based blockchains.

File Uniqueness as a Key to Understanding Tradeoffs Hypercycle
inherits from TODA the centrally important invariant that each file must
have a single canonical well formed proof of provenance. The key questions,
which we have been discussing in this section as regards lightweight versus HS
consensus mechanisms are ones like: How quickly can that proof be obtained?
How complex is obtaining it? How much of a security margin is there for my
files? What recourse is there if something blows up (either through lack of
availability or through widespread equivocation)?

The answer to each of those questions is ultimately “it depends”, because,
as with TODA, there is a goal of having Hypercycle workable in a variety of
different use-cases with different practical requirements, while maintaining
canonical uniqueness for the underlying files. This requires flexibility be-
cause the security margin you want for high value assets always costs a fair
bit in terms of finance and/or performance, and continues to cost over time
(nothing is free), whereas for efficient micro-transactions you have to accept
significantly lower security margins to get the efficiency required. What we
can ask for is not a single detailed blockchain design that addresses all possi-
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ble requirements with the exact same set of algorithms, but rather a flexibly
modularized blockchain design that can be elegantly customized to meet
a broad set of requirements – for instance via diverse pluggable consensus
mechanisms, as in the case of Hypercycle.

File Uniqueness Across Multiple Rings These tradeoff-related issues
arise in particularly subtle ways when considering the dynamics of TODA/IP-
based systems across multiple rings. The uniqueness of a file in a multi-ring
network is guaranteed only if we have consensus about cycle roots, in an
appropriately defined sense. In the simplest case, if there is agreement about
all cycle roots across all rings in the network, we can pass files between rings
unproblematically. However, this strong situation is not the only one of
interest. For instance, if I have a file which was in another ring A for some
period of time, then to appropriately carry out proofs regarding A I require
cycle roots from ring A for this period of time, but not necessarily beyond
this period of time. The proof data from A over the relevant period of time
is included in the file’s proof of provenance, and serves to link the cycle roots
of A into the greater network of rings.

3.3 The MeTTa AI Language As A Plutus Framework

Cardano’s Plutus smart contract framework provides an extremely powerful
framework for developing software processes for on-chain execution; and part
of this power is the flexibility that it provides to create smart contract lan-
guages with different syntax and semantic and implement and deploy these
using Plutus as a base layer.

MeTTa (Meta Type Talk) [Pot21] is a highly flexible AI programming lan-
guage, developed as part of the OpenCog Hyperon AGI framework [BGT21].
It features a native meta-type system designed to ease creation of custom ap-
plication and algorithm specific type systems, including systems centered on
gradual, dependent and probabilistic types. It provides a natural means for
software agents to describe each others’ properties to each other (and for this
reason will likely be inserted as a replacement for Idris2 in the AI-DSL under
development by Cardano and SingularityNET for structuring and guiding
interaction of SingularityNET agents [GG21]).

MeTTa will be deployed within the Hyperon project as a framework ac-
cessible via python, Julia and possibly other languages. Making it accessible
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within Haskell as well would have the effect of enabling the scripting of Plu-
tus smart contracts in a combination of Haskell and MeTTa, which could
have numerous advantages given the greater richness of MeTTa’s semantics
– both advantages for smart contracts involving AI operations more concisely
expressed using MeTTa’s abstract type constructs, and also for applications
suited to leverage MeTTa’s facilities for creating DSLs.

3.3.1 Smart Contract DSLs for HyperCycle: A Path to Broad
Usability

Smart contract coding can be a subtle and sensitive matter, and it’s prefer-
able to have a framework in which most application developers don’t need to
think much about the nitty-gritty of smart contracts and can focus on their
application. In the Ethereum world, the closest thing that has emerged to us-
ability is a ”cut and paste culture” in which most developers work by copying
others’ Solidity code and tweaking it to suit their needs. However, this is not
how things work in a software ecosystem powered by tools with reasonable
composability. Haskell provides powerful composability but has the disad-
vantage of being relatively opaque to most developers without background
in functional programming or related mathematics.

An alternate approach to achieving usable smart contract development
is the creation of domain specific languages presenting developers with only
those blockchain-related functions they really need in their domain of ap-
plication. Cardano’s Marlowe DSL-for-decentralized-finance pioneered this
approach [SNST20], but also highlights some relevant caveats. While Mar-
lowe is extremely elegant it seems not to provide out-of-the-box the most
convenient approach for achieving scalability in modern DeFi applications.

So, for example, a Cardano DeFi application like SundaeSwap ended up
directly leveraging Plutus (which is generic) rather than Marlowe (which is
finance-specific but not tailored for the particular sort of financial operations
at the heart of SundaeSwap) [LT22]. One thing this illustrates is the need
for a framework enabling rapid updating and modification of DSLs within
an extremely flexible base language. This course was not open for Marlowe
when it was initially created as its launch preceded that of Plutus, but it is
important to consider in a Hypercycle context.

MeTTa provides an elegant approach for the creation of application and
algorithm specific DSLs, similar to the use of Idris for DSL creation [Bra13]
[Bra20] but with greater flexibility. The simple and generic nature of the
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process of DSL creation in MeTTa opens the door for tools that auto-generate
low-code or no-code UI frameworks for MeTTa-specified DSLs. This arguably
is the most (and perhaps only) viable approach for making smart contract
development adequately simple and usable for the average product developer
without sacrificing security, robustness or capability.

Depending on the DSL, in many cases it may be possible to create low-
code or no-code frameworks that implicitly conduct authoring in the DSL.
The abstract nature of MeTTa lends itself well to the templatization of this
sort of process, e.g. to the creation of general-purpose tools for mapping
sufficiently simple application-specific DSLs into corresponding low/no-code
frameworks. In this approach the only people who need to deal with the tech-
nicalities of Plutus and MeTTa are those who are writing DSLs for new do-
mains, or creating custom applications sufficiently recondite that they don’t
correspond to any of the DSLs in the library.

4 A Few Promising Early Applications

We now give a few brief notes about a few key Hypercycle application areas
that we are eager to explore once a sufficiently mature version of Hypercycle is
available. We note this is somewhat of a haphazard sampling of the possibility
space, reflecting our current landscape of pursuits which may omit projects
and verticals that will be at the top of our minds by the time Hypercycle is
ready for scalable usage. Also, of course, much of the beauty of launching
an extremely flexible and general purpose platform is that others can then
utilize it in ways and domains one never conceived.

4.1 Swarm AI: Evolutionary Learning, Algorithmic Chem-
istry, Ensemble ML

One major use-case driving the design of Hypercycle is the desire to run
population-based AI methods on-chain – for instance, run a genetic algo-
rithm where each population member is an on-chain agent and crossover and
mutation are on-chain transactions. ”Algorithmic chemistry” applications as
explored in e.g. [Goe16] [Bul20]present similar issues and opportunities.

There is also great potential in the area of decentralized ensemble machine
learning – building model ensembles confronting a common data-analysis
or reinforcement learning problem, in a setting where each model in the
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ensemble may be owned and managed by a different party. To carry this
out in a transparent and fully decentralized way, one would like as much
as possible of the process of passing around datasets, assessing and merging
results, running tests and so forth to be done on-chain.

These are applications where for almost all problems a lightweight consen-
sus approach will be preferable – maximal real-time security is not key. If an
attack or failure causes some interim AI results to be lost, this is unfortunate
but rarely tragic. DSLs here will serve as AI algorithm configuration lan-
guages enabling developers to quickly experiment with different approaches
on different datasets in different applications.

4.2 Ratings and Rewards in Online Networks

Managing ratings and rewards in online networks is another case where
lightweight consensus is desirable. In this case it is important that attacks or
system failures not cause participants’ ratings or rewards to get permanently
lost, but it’s OK if making participants whole after infrequent unfortunate
incidents takes some time and depends on a slow-paced conflict resolution
mechanism. Having maximally strong real-time security guarantees is less
important than having a system with very low cost of operation, and which
is quick and effective under all normal circumstances. It is also easy to
envision a low or no code DSL enabling developers to quickly specify the
customization of the weighted liquid rank reputation framework and various
related reward tokens in their applications.

4.3 Decentralizing Payments and Processing Power

Two somewhat subtler use-cases are decentralized payments processing, and
the tokenized decentralized management of processing power done in the
NuNet platform 6.

In each of these cases, one has a spectrum of transactions, some of which
are small in magnitude (micropayments on an online media platform, uti-
lization of small amounts of background processing on an individual’s smart-
phone) and naturally match with a lightweight consensus protocol, others
of which are more serious (larger payments, utilization of large chunks of

6http://nunet.io
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processing such as supercomputer time or significant portions of a corpo-
rate computing network) and would merit the added protocol-level security
guarantees of something like HS enhanced consensus.

These applications would appear to benefit from multiple rings with dif-
ferent consensus mechanisms, and the ability for some agents to participate
in transactions in both rings. So for instance if I pay a few US cents equiv-
alent to a blogger based on the time I spent reading their article, this goes
through a lightweight consensus based ring; but if I pay a larger chunk of
funds to an AI server farm to train a big ML model, this should go through
an HS enhanced ring.

DSL-wise, the Marlowe framework would seem to have many positive
lessons to teach here, and one envisions a Marlowe-like language embedded
in Plutus via MeTTa leveraging unique Hypercycle transactional features
based on TODA and reputation.

4.4 Adaptively Blending Public and Private Chains

TODAQ, one of the companies in the TODA ecosystem, has pioneered the use
of centralized TODA rings for enterprise applications. A private TODA ring
of this nature can interoperate naturally with public TODA rings running on
decentralized consensus mechanisms like TODA/IP, due to the elastic nature
of the TODA design in which the sovereignty of the individual data file is
key.

A similar approach can be taken for enterprise deployments of Hypercycle.
In fact there are multiple approaches to be pursued for different enterprise
contexts.

One strategy is to develop a Hypercycle ring with outright centralized
control and data management: Basically going beyond the HS enhanced
consensus and just using a centralized database as a Hypercycle ledger, with
only as much replication as is needed for practical efficiency (no need to use
replication to assure decentralized control in this case).

Another strategy, opposite in some ways, is to recognize that within the
bounds of a particular enterprise, it may be that lightweight consensus mech-
anisms can safely be used, because it’s safe to assume that all the agents op-
erating in the Hypercycle ring are going to be honest and cooperative with
respect to each other. This approach can enable greater efficiency within the
walled garden of an enterprise than can ever be possible in the ”wild west”
of a public blockchain.

34



The choice between these two strategies depends on the degree of cen-
tralization and internal trust in the particular enterprise in question. The
Hypercycle infrastructure supports a variety of custom possibilities beyond
the two specific extreme strategies indicated here. Broadly, the point to be
made in this regard is that the flexibility to define rings with custom con-
sensus mechanisms, and then transact agents and files across these rings,
allows hybrid public/private blockchain deployments to be created to meet
the needs of essentially any enterprise. After an initial batch of enterprise
deployments has been successfully executed, as a side-effect set of template
”enterprise consensus mechanisms” will have been created, which will handle
the vast majority of enterprise situations.

5 Conclusion: Catalyzing the Future Blockchain

Ecosystem

Blockchain technology is still in its early days, and it would be a mistake
to assume that the technologies that have become popular today represent
mature solutions that compellingly solve the problems they address. Some
leading blockchain frameworks do embody algorithms, structures and pro-
cesses that appear solid enough to persist into the decentralized networks of
the future – EUTxO and Plutus being two examples we’ve reviewed here.
However, there are also major aspects of current blockchains, such as the
default use of distributed replicated ledgers, that appear to us to owe their
current dominance largely to historical accident rather than fundamental
superiority or appropriateness.

We have articulated here a novel blockchain design, Hypercycle, which
we believe has the power and the flexible customizability to serve as the
basis for the decentralized networks of the future, at least in the particular
arena of large-scale systems of software agents providing microservices to
themselves and external consumers. Rather than building a new blockchain
from scratch, we aim to piggyback on the excellent systems created by the
Cardano community and implement Hypercycle according to a sidechain-like
design pattern, to interface with the Cardano network via Hydra and leverage
the Plutus smart contract language. Via putting core aspects of Cardano
together with essential ideas, structures and processes from the TODA/IP
blockchain and the Proof of Reputation and OpenCog Hyperon frameworks,
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we believe a radically different future for blockchain technology can be laid
out with relatively modest (though still far from trivial) engineering effort.

Our most immediate use-cases for Hypercycle are the SingularityNET de-
centralized AI network, and the various spinoff projects emergent from the
SingularityNET ecosystem (e.g. NuNet for decentralized processing power,
Mindplex for decentralized media, Rejuve for decentralized medical data
and research, SophiaMundi for decentralized metaverses, SingularityDAO for
DeFi, etc.). However, Hypercycle’s scope extends far beyond these particular
application and we foresee a very broad range of utilization once Hypercy-
cle’s engineering and deployment are complete. Indeed we believe Hypercycle
technology has the potential to play a key role in projecting blockchain be-
yond the niches it currently serves and into the dominant role in the global
tech and financial ecosystem that various pundits have long foreseen.
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