
Abstract

Coreum: One Blockchain For All
Technical White Paper

Version 1.01 - June 2022

�

Disclaimer     Please read the entirety of this "Disclaimer" section carefully. Nothing herein constitutes legal, 
�nancial, business or tax advice and you should consult your own legal, �nancial, tax or other professional 
advisor(s) before engaging in any development and activity in connection herewith. Neither Sologenic develop-
ment Foundation Limited, any of the project team members (the CORE team) who have worked on the Coreum 
blockchain (as de�ned herein) or project to develop the Coreum blockchain in any way whatsoever, any distribu-
tor/vendor of $coretokens, including without limitation Sologenic Development Foundation Limited, nor any 
service provider shall be liable for any kind of direct or indirect damage or loss whatsoever which you may suffer 
in connection with accessing this whitepaper, the website at https://coreum.com/ (the Website) or any other 
websites or materials published by the foundation and the team. This whitepaper is subject to change without any 
prior notice.

The advent of blockchain technology has attracted huge interest in modern 
times. Through various protocols, the blockchain plays an important role in 
every business vertical. Some blockchains such as Bitcoin are a great store of 
value, others like Ethereum promise to verify and execute application code. 
While smart contract engines such as EVM are great for numerous types of 
applications, they remain non-deterministic and non-scalable. 

The Coreum blockchain is distinct in many ways and incentivizes the network 
participants to conduct more transactions by providing bulk fee discounts. It 
is designed to solve real-world problems at scale by providing native token 
management systems, such as a Decentralized Exchange (DEX), while being 
fully decentralized. In addition to the built-on-chain solutions, Coreum uses 
WebAssembly (WASM) to process smart contracts, and utilizes the Tender-
mint Byzantine Fault Tolerance (BFT) consensus mechanism and Cosmos 
SDK’s proven Bonded Proof of Stake (BPoS).    

Furthermore, Coreum is built for token ecosystems such as digital assets 
issuing, stablecoins, traditional asset tokenizations, CBDCs, and NFTs.



Table of content

Disclaimer

Abstract

1   Architecture

1.1   Tendermint & Cosmos SDK

1.2   Interoperability with Other Blockchains

1.3   Side Chains

2   Proof of Stake

2.1   Staking

2.2   Validators

2.3   Delegating

2.4   Transaction Fees

2.4.1   Gas

2.4.2   Gas Price

2.5   Validator Rewards

2.5.1   Reward Distribution

2.6   Slashing

3   Governance

4   Token Management

4.1   Introduction

4.2   Architecture

4.3   Token Properties

4.3.1   Token Symbol

4.3.2   Minting & Burning

4.3.3   Whitelisting

4.3.4   Fungible vs Non Fungible

4.3.5   Token Freezing

4.3.6   Precision 

1

1

4

4

5

6

6

7

8

9

10

10

10

12

12

13

14

14

14

15

15

15

15

15

16

16

16

4.4   Token Issuance

4.4.1   Transactions

4.4.2   Complete Flow Example

5   Smart Contracts

5.1   WASM

5.2   CosmWasm

5.3   CosmWasm Architecture

5.4   Contract Flow

5.5   Cosmos SDK Wasm Module

5.6   Rust Language

6    Decentralized Exchange (DEX)

6.1   On-Demand Orderbook

6.2   Direct & Indirect Order Matching

6.3   Order Execution

6.4   Order Types

6.4.1   Market Orders

6.4.2   Limit Orders

6.5   Advanced Features

6.5.1   Good Till Cancel Orders

6.5.2   Good Till Time Orders

6.5.3   Immediate or Cancel Orders

6.5.4   Fill or Kill Orders

7     Decentralized Apps (dApps) 

8     Use Cases

9     Token Economy

10   Allocation

11   References

�



�

Disclaimer

Abstract

1   Architecture

1.1   Tendermint & Cosmos SDK

1.2   Interoperability with Other Blockchains

1.3   Side Chains

2   Proof of Stake

2.1   Staking

2.2   Validators

2.3   Delegating

2.4   Transaction Fees

2.4.1   Gas

2.4.2   Gas Price

2.5   Validator Rewards

2.5.1   Reward Distribution

2.6   Slashing

3   Governance

4   Token Management

4.1   Introduction

4.2   Architecture

4.3   Token Properties

4.3.1   Token Symbol

4.3.2   Minting & Burning

4.3.3   Whitelisting

4.3.4   Fungible vs Non Fungible

4.3.5   Token Freezing

4.3.6   Precision 

4.4   Token Issuance

4.4.1   Transactions

4.4.2   Complete Flow Example

5   Smart Contracts

5.1   WASM

5.2   CosmWasm

5.3   CosmWasm Architecture

5.4   Contract Flow

5.5   Cosmos SDK Wasm Module

5.6   Rust Language

6    Decentralized Exchange (DEX)

6.1   On-Demand Orderbook

6.2   Direct & Indirect Order Matching

6.3   Order Execution

6.4   Order Types

6.4.1   Market Orders

6.4.2   Limit Orders

6.5   Advanced Features

6.5.1   Good Till Cancel Orders

6.5.2   Good Till Time Orders

6.5.3   Immediate or Cancel Orders

6.5.4   Fill or Kill Orders

7     Decentralized Apps (dApps) 

8     Use Cases

9     Token Economy

10   Allocation

11   References

16

17

17

18

19

19

19

20

20

21

21

21

22

22

23

23

23

23

23

23

23

24

24

24

25

25

26



1 Architecture

At the heart of every blockchain lies the consensus mechanism; Coreum utilizes 
Tendermint - a well-established consensus engine that many blockchains rely upon. 
The Cosmos SDK makes use of Tendermint to provide tooling and pre-made mod-
ules for the building of application-speci�c Blockchains with a proof of stake securi-
ty mechanism. 

Coreum will be built on top of Tendermint and Cosmos SDK while making changes 
whenever necessary. This will allow the new layer-1 to tap into the vast ecosystem 
built around the Cosmos SDK; such as wallets, explorers, and other modules.  

1.1   Tendermint & Cosmos SDK

Excerpted directly from tendermint website: 
“Tendermint is software for securely and consistently replicating an application on 
many machines. By securely, we mean that Tendermint works even if up to ⅓ of 
machines fail in arbitrary ways. By consistently, we mean that every non-faulty 
machine sees the same transaction log and computes the same state. Secure and 
consistent replication is a fundamental problem in distributed systems; it plays a 
critical role in the fault tolerance of a broad range of applications, from currencies, 
to elections, to infrastructure orchestration, and beyond.” [1]

Although in the above paragraph from tendermint website it is said that Tender-
mint works when even up to ⅓ of machines fail, but in reality tendermint consensus 
works with voting power and not number of machines, and it is up to the applica-
tion layer to decide how that voting power is determined. One might assign 1 voting 
power to each machine on which the above statement is based or in the case of 
Coreum voting power is assigned proportionally to the amounts of CORE staked.

“More formally, Tendermint Core performs Byzantine Fault Tolerant (BFT) State 
Machine Replication (SMR) for arbitrary deterministic, �nite state machines.” [2]

Tendermint brings decades-old academic research on BFT into the world of block-
chain and facilitates high-throughput low-latency proof-of-stake blockchain, which 
is not only fast but also hugely more power ef�cient than proof-of-work.

�



Tendermint has two main parts: a consensus engine and an interface to communi-
cate with the application layer. The application layer will contain all the business 
logic speci�c to the blockchain and the consensus layer will facilitate networking 
and consensus between all nodes. And this is where Cosmos SDK �ts in. It facili-
tates building applications on top of tendermint by providing an architectural 
pattern, tooling and other commonly used modules.

1.2   Interoperablity with Other Blockchains

Coreum will enable communication to, and, from other blockchains. Users will be 
able to transfer tokens from external blockchains into Coreum and vice versa. This 
interoperability works by locking or burning the tokens in the source chain and 
minting them on the target chain. Thus, when the token is transferred back from 
the target chain onto the source chain, it is burned on the target and unlocked in 
the source.

For Cosmos-SDK-based chains, Coreum will use the IBC protocol [3] which is avail-
able as an open source component. IBC is an interoperability protocol designed for 
communicating arbitrary data between arbitrary state machines. It consists of 2 
layers: 

1. Data transfer layer: establishes communication channels by creating 
connections and transferring data between chains.
2. Application layer: which de�nes how messages should be encoded, decoded 
and interpreted at each end of the communication channel.

The IBC protocol can be used for different use cases including but not limited to 
transfers, interchain accounts (delegate calls between two chains) and oracle data 
feeds.

Coreum will implement communication layers either via IBC or bridge to communi-
cate with the following blockchains with more to follow down the line:

• Bitcoin
• Ethereum
• Ripple
• Solana
• Binance Chain & Binance Smart Chain
• Cosmos (ATOM)

�



1.3   Side Chains

In Computer science there is an invariable limit on how much you can scale a 
software by adding more resources to it called vertical scaling. The solution to that 
problem is a parallelism formally known as horizontal scaling.
 
Coreum is incurring heavy research and development around the use of side chains 
for exponential scalability and the production of more throughput when needed. A 
single chain can do up to 7000  simple transactions per second, consequently, by 
adding a single side chain, the throughput is increased to 14000. Of course there are 
applications that cannot run on multiple side chains, for example a DEX.  For such 
use cases, a dedicated chain will run individually. The image below provides an 
overview of how side chains will look like.

2 Proof of Stake

As mentioned before, Coreum will use Cosmos SDK’s Bonded Proof of Stake securi-
ty scheme to build its own blockchain. A short description of the most important 
parts of the BPoS will be provided here.

�

�



2.1   Staking

Staking is one of the most important components of a Proof-of-Stake Blockchain. It 
ensures the network remains secure while giving validators and delegators a 
passive income by staking their CORE tokens and getting rewards. 

In fact, Staking is the backbone of every proof-of-stake consensus. A proof-of-stake 
network is secured when a stakeholder locks their tokens and gets voting power in 
exchange, then they use that power to vote on each block. The assumption is that 
it is in the bene�t of the stakeholders to secure the network since the value of their 
assets depends on the security of the network itself. 

It can be deduced that the more tokens are locked as stake, the more secure the 
network is. For example if the total value locked (TVL) as stake is about 1% of the 
entire token value, then if an attacker controls one third of that 1%, they can halt 
the network, but if 75% is locked as TVL then they need to control 25% of the total 
value to halt the network. So a proof of stake network must encourage its partici-
pants to stake and reach a reasonably high TVL percentage. 

Given the fact that the only incentivization mechanism in proof-of-stake is block 
rewards, then if there are enough transactions in each block, more fees will be 
collected and more people will stake their tokens. But if there are not enough 
transactions happening then the rewards will be too low and the TVL will go down, 
bringing risk to the network. To accommodate for that problem, variable in�ation is 
introduced. Meaning that some tokens will be minted in each block, added to block 
rewards (alongside fees), and passed to the validators and delegators to incentivize 
them to provide more stake, and the amount of in�ation rate is inversely propor-
tional to TVL. If TVL is equal or higher than the target value then the in�ation rate 
goes down to its minimum and if it is not will go up but there is an upper limit to 
the in�ation rate.  

These tokens will be minted in a manner that a maximum yearly in�ation rate is 
observed. It is evident that the minting will introduce in�ation to the system, which 
will further incentivize non-stakers to effectively stake their tokens so their assets 
don’t lose value. It must be noted that if there are enough transactions in each 
block, and, enough incentivization is produced from transaction fees so that stak-
ers are locking enough stake to meet the target TVL, then the in�ation will not be 
necessary and will automatically go down to zero.

�



2.2   Validators

In Tendermint, validators are responsible for the seamless operation of the network 
by ensuring that blockchain invariants are enforced and consensus is reached. 
They do so by putting their assets as stake, which grants them voting power 
proportional to the amount of their stake. Delegation is another source of getting 
voting power which will be discussed later.

The exact procedure of Tendermint consensus is described in the Tendermint 
whitepaper [1] & their website [2].

In Coreum there are different types of validators as: 
•   Public validator: Introduced to allow any network user to participate in the 

consensus and contribute to the security of the network. To increase 
decentralization, any network participant can become a public validator by 
staking a minimum amount of CORE tokens. Individuals can also step down 
from being a public validator; however, their stake will stay locked for some 
time after that called unbounding period.

•  Super validator: Any public validator can become a super validator by 
submitting a proposal via on-chain governance and getting more than 50% 
of votes from all validators. The reasoning behind introducing Super Valida-
tors is to add more trust to the circle of validators by introducing social 
trust. In other words, having a mix of Super and Public Validators will allow 
Coreum to have the same level of security with less validators compared to 
only having public validators which, in turn, will translate in delivering more 
throughput and less latency while keeping the same security guarantees. A 
super validator at any time may decide to step down and go back to being a 
public validator. And it is also possible for other token holders to submit a 
proposal to demote other super validators from being a super validator.

•  Active validator: A subset of validators will be chosen for a period of time 
called Active Validator Interval (AVI) to partake in the validation process. 
The active validators will be chosen from public and super validators with a 
�xed number of seats for each validator type. The active validators will 
rotate to give every validator a chance to participate in the process and earn 
rewards, which will increase decentralization and network participation. 
The motivation behind the Active Validator concept is to limit the number 
of validators that are actively participating on the consensus so Coreum can 
deliver high throughput at all times.

�



There will be 16 active validators on the Coreum blockchain including 9 public and 
7 super validators. With a �xed number of active validators, and an arbitrary 
number of public and super validators, a round robin mechanism will be used to 
choose the active ones from the pool of public and super validators for the duration 
of the Active Validator Interval (AVI).

This means that there will be two queues, one for each validator set (public and 
super validator), each of which contains a pair of validators together with their 
respective priority number. The steps listed below will be carried out in each 
queue:

•  At the genesis block, precon�gured validators will have some voting power 
allowing blockchain to start.

•  At each block, token holders may propose one of the following actions:
•    Become public validator
•    Step down from being public validator
•    Submit a proposal to become a super validator. The proposal will be put 

into vote via governance & accepted if the majority of votes are in 
favour

•    Step down from being a super validator
•   Submit Proposal to demote other super validators from their position. 

The proposal will be put into vote via governance and get accepted 
only if enough votes are acquired.

•���At the end of each AVI, in each queue, an algorithm will run to determine 
the next selection of active validators. A basic description of the algorithm 
follows, but the complete implementation is more nuanced.
•   Top validators with the highest priority number will be chosen as the 

next validator and their priority will be decreased by the total voting 
power present in the queue.

•   Every other validator in the queue will have their priority increased 
equal to their voting power.

In order for an entity to become a validator, it must run a full node and have a stake 
of at least 10,000 CORE tokens.

2.3   Delegating

Users who do not wish or do not have the means to become a validator can become 
delegators. In short, delegators can choose a validator and stake their CORE 

�



tokens by paying a commission to the validator. Delegators will also get punished if 
the validator misbehaves, so they must carefully choose who they delegate to, to 
avoid punishments.

Delegators can also choose to delegate to multiple validators by consigning a 
portion of their stake to each one. This will help reduce the �nancial risk of getting 
slashed if one of the validators misbehaves so not all of their assets would be 
subject to a single slashing. 
 
Moreover, delegators are also expected to actively participate in governance. A 
delegator’s voting power is proportional to the size of their stake with the validator 
and if they don’t engage in community voting, their power is shifted to the valida-
tors.

2.4   Transaction Fees

Coreum uses fees for transaction processing to secure the network by paying 
validators, disincentivizing attacks, etc. The fee is determined by the following 
formula:

fee = gasPrice * gasUsed

The gasUsed variable is invariant for a known transaction but gasPrice may 
change which will result in having different fees at different times for that trans-
action. 

2.4.1   Gas

Gas is a measure of how much computational power each transaction needs. For 
each transaction type, the amount of gas needed is a predetermined amount. The 
total gas allowed in each block will be called MaxBlockGas.

2.4.2   Gas Price

Coreum will use a combination of governance and an on-chain mechanism to 
dynamically determine the gasPrice to be speci�ed in units of CORE. Some 
variables are de�ned below to utilize in gas price calculations:
Base Gas Price (GP0 

): gas price when the average block load is zero, determined by 
on-chain governance.

��



BlockLoad: Is an indicator of what percentage of block capacity is used and is 
determined by the following formula:

BlockLoad = GasConsumedInBlock / MaxBlockGas

Averag eBlockLoad
n 
: Is the average BlockLoad in the previous n blocks

BoundaryLoad: Is the ideal BlockLoad that we want the blockchain to operate at.
MaxDiscount: The maximum discount applied on Base Gas Price when the 
network is operating below the BoundaryLoad.

The gas price formula is designed to incentivize the blockchain to operate at 
BoundaryLoad. It is described in the following formula:

The �gure below demonstrates the above equation. In each block, BlockLoad is 
used to determine the gas price of the next block based on the Base Gas Price 
which in turn is determined by on chain governance. The equation is piecewise, 
with the �rst piece corresponding to a section with a downward trend. Here the 
BlockLoad ranges from zero to AverageBlockLoad

n
, and is designed to incentivize 

the blockchain users to collectively do a little more (or at least not less) transac-
tions than the average block, and bene�t from the maximum discount of gas price 
provided by the network. 

The second part of the equation is a constant value equal to maximum discount 
applied to the base price. It corresponds to the �at line in the middle of the chart. 
This is the section that the users are encouraged to keep the network running at. 

The third section is where the BlockLoad is higher than the BoundaryBlockLoad 
and the network will increase gas prices to disincentivize more transactions getting 
submitted and bottlenecking the network. Another word for this section of the 
equation is fee escalation and it is designed to keep the system from overloads.

��



2.5   Validator Rewards

Block rewards will be split between active validators to incentivize their participa-
tion in the consensus. These rewards consist of transaction fees that go into the 
block plus additional rewards minted by the blockchain itself. Given the fact that a 
POS system is secured via its own stake, the minted amount is meant to encourage 
token holders to stake their tokens in case that there are not enough CORE tokens 
locked in as stake. So the minted value will go up if TVL is less than the target TVL 
(up to a maximum yearly in�ation) and will go down if TVL is higher than target 
TVL (and it may even go down to 0).

2.5.1   Reward Distribution

Rewards �rst will be split between public validators and super validators according 
to their seats. Meaning if there are 9 public validators and 7 super validators then 
7/16 of the rewards will go to super validators and 9/16 to public validators. It will 
then be split among each set in proportion to their stake. For example if all the 
super validators have 10,000 stake and one of them has 1000, then that validator 
will get a portion of block rewards equal to 1/10*7/16.

��



2.6   Slashing

As important as it is to incentivize the contribution of validators by rewarding 
them, it is important to punish them on certain occasions for bad behavior; this 
protocol is called slashing. The mechanism for slashing is taken directly from the 
Cosmos SDK moule with the same name and readers can refer to that for more 
details. But a general description will be provided here as well.

Punishments related to slashing include disqualifying a validator from the commit-
tee board, capturing or burning some of the validator stakes or disabling a validator 
for a brief period of time.

There are two main types of penalties when it comes to slashing:
1. Jailing: The misbehaving validator is immediately put into “jail”, meaning 

that they cannot participate in next blocks voting until some time has 
passed and they unjail themselves by issuing a speci�c transaction.

2. Slashing: a percentage of the staked assets of the validator (alongside the 
delegators who delegated to that validator) will be deducted and burned.

There are two main types of misbehavior:
1. Liveness misbehavior (i.e not showing up to vote on a block)
2. Counterfactual signing misbehavior (e.g double signing, rejecting a valid 
block,...)

The liveness misbehavior is taken to be unintentional but the counterfactual sign-
ing is assumed to be a malicious one.

In either case when a misbehavior is detected the validator immediately will be put 
into jail. Meaning that they will not be able to participate in future validation 
processes until some time has passed and they unjail themselves. This ensures that 
the network is taking immediate action and there is always a healthy set of valida-
tors securing the network. 

The slasing part works differently for malicious behavior (e.g counterfactual sing-
ing) and unintentional misbehavior (e.g liveness). For unintentional misbehavior 
the validator will be put into jail and slashed immediately and they can unjail them-
selves after a short period of time. But for the malicious behavior they are kept in 
jail for a longer period of time and the network will wait until all the evidence for 

��



the misbehavior is gathered and submitted to the network. Slashing will not stack, 
and only the single most severe penalty will be applied to reduce the harshness of 
the punishment.

3 Governance

Coreum’s Proof of Stake Consensus Mechanism (BPoS) allows for an on-chain 
governance ecosystem that enables stakeholders to vote on various decisions to 
upgrade and improve the chain over time. The Coreum community can decide on 
protocol changes and vote on new proposals to the chain. As some blockchains like 
Ethereum do not offer any sort of on-chain governance features, Coreum engages 
the community to participate in key decisions.

A range of different proposals can be submitted through on-chain governance and 
be put up for voting, the list includes but is not limited to: The base gas price, slash-
ing, staking, delegation, number of validators, block times, grants, etc.

The following is a life cycle of proposals on the Coreum blockchain:
1. Proposal submission: Stakeholders submit proposals with a fee. Once a 

proposal reaches a certain deposit, the proposal enters into a voting period.
2. Voting: Participants can vote on proposals that reached minimum fee 

requirements and are active for voting.
3. Inheritance and penalties: Delegators inherit their validator’s vote if they 

don’t vote themselves.
4. Claiming deposit: Users that deposited on proposals can recover their 

deposits if the proposal was accepted OR if the proposal never entered the 
voting period.

To achieve this, Coreum will inherit Cosmos SDK’s gov module [5] and will make 
modi�cations if necessary.

4 Token Management
4.1   Introduction

��



The Coreum token has a rich set of properties, which allow users of the blockchain 
to accomplish a wide range of use cases. For example, trading stock shares, pay 
dividends on those shares or tokenize a wide range of fungible and non fungible 
assets.

4.2   Architecture

Creating and minting tokens (fungible and non-fungible) on the Coreum block-
chain is supported natively. The built-in functionalities allow token  issuers to 
customize their tokenized assets with optional features such as wallet whitelisting, 
burning and freezing for when it comes to the heavily regulated �nancial markets 
like Stocks and ETFs.

4.3   Token Properties

4.3.1     Token Symbol

Each token in Coreum is uniquely identi�able by the combination of it’s currency 
code and issuer. The code derives from taking the address of the issuer, decode it 
from bech32 to bytes and then encode again using the token symbol as bech32 
pre�x.
The result would be:
tokenabcf360al7er8flap94qnl7xghq40d8zez9xlef3j�

4.3.2     Minting & Burning

Minting is the process of creating new tokens. Upon issuing a new token, the user 
will need to indicate how many will be minted and if further minting will be 
allowed. 

On the other hand, tokens are removed from circulation by being “burned”. Users 
can control if tokens can or cannot be burned.

4.3.3     Whitelisting

Whitelisting restricts the usage of a given token to a subset of authorized address-
es. This feature enables some token creators to comply with regulations that 

��



require KYC/AML and can be extremely useful for institutional and governmental 
user types. 

At the time of token issuance, the user can specify whether holding (sending/re-
ceiving) and trading of this token is allowed by anyone or should be restricted to 
users who are whitelisted.

4.3.4     Fungible vs Non Fungible

Upon issuance, users will choose whether the token will be fungible or not. Non 
fungible tokens (NFTs) can represent ownership over digital or physical assets and 
have a maximum supply of 1 token.

Some examples are the following:
•  Intellectual properties — unique monkey faces, avatars
•  Physical property — land, houses, artwork
•  Financial assets — loans, burdens and other responsibilities

4.3.5     Token Freezing

An account freeze essentially means suspending the ability to transfer and receive 
account tokens. Token issuers can de�ne if an asset can be frozen by its issuer on a 
speci�c account. Moreover, the freeze can be applied to speci�c addresses or to all 
token holders (global freeze), and it can be applied to the total balance of an 
address or only to a portion of the balance. 

4.3.6     Precision

Upon issuing new tokens, users should indicate the number of decimals a given 
token can handle.

4.4   Token Issuance

The term token issuance may also refer to the process of tokenization, in which an 
asset outside of the cryptocurrency ecosystem is added to the blockchain via a 
speci�c crypto token. In such cases, token issuance becomes the process of creat-
ing a token, yet not one that belongs to a cryptocurrency, but rather a token that 
represents an outside asset. This can have numerous applications on different 

��



asset types (physical, digital or �nancial).asset types (physical, digital or �nancial).

Token issuance is the process of creating new fungible and non-fungible tokens on 
the Coreum blockchain.  
With a whitelisting feature, Coreum can offer the means to allow users to comply 
with regulated environments; some potential users for this feature would be large 
organizations or governmental entities.

4.4.1     Transactions

•  Issue transaction: Tokens are issued when minted for the �rst time on the 
blockchain. The token code needs to be unique and the token con�guration 
gets saved on a key value store which will be kept on-chain. 

•  Mint transaction: The mint transaction will add a speci�ed amount of tokens 
to the total supply. The newly minted tokens will go to the speci�ed 
address. (*)

•  Burn transaction: The burn transaction will remove existing tokens from  
total supply, subtracting them from the supplier's account. (*)

•  Whitelist transaction: The whitelist transaction will allow certain addresses 
to  hold (send / receive) and trade a token in which whitelist the address is 
included. It is important to note that addresses can represent either a block-
chain user or smart contract. (*)
(*) The mint, burn and whitelist transactions may be available or not 
depending on options set during Issue transaction.

4.4.2     Complete Flow Example

User A issues a new token called “ABC” and sets the con�guration in a way that the 
newly minted tokens are transferred to User B. User A also restricts holding of this 
token by setting a con�g setting called “require_whitelisting”.

After this transaction, User B instantly gets whitelisted and is delivered the “ABC” 
tokens. Now user C wants to receive “ABC” tokens from user B. They now must ask 
user A (creator of the token) to whitelist User C to be able to hold the token. After 
whitelisting is done, user C can receive tokens from user B. This feature enables 
some token creators to comply with regulations that require KYC/AML.

The creator of the token (user A) can also freeze anyones “ABC” tokens held in 

��



their wallets (given that they set the con�guration that allows them to do so when 
they minted the token). The same user (user A) can also set a global freeze to all 
holders of the “ABC” token at any time (again, given that they set this con�g when 
minting the token).

5 Smart Contracts

The Coreum blockchain will be able to store and execute smart contracts. In 
essence, a smart contract is a computer program that can be stored in a blockchain 
with the purpose of later being instantiated and executed. Although literature on 
smart contracts dates back to 1994, when Nick Szabo [6] �rst introduced the 
concept,  Ethereum was the pioneer in making a widely adopted implementation. 

While EVM (Ethereum Virtual Machine) was great at the time for smart contract 
execution, it has shown some shortcomings in various aspects. Some of these short-
comings are:

Some of these shortcomings are:
•  Security �aws (re-entrancy attacks, Arithmetic Over/Under Flows, etc). [7]
•  Lack of support for integers smaller than 256 bits, which leads to inef�cien-

cies.
•  Tight coupling between contract and Solidity language.

ISSUES

T
R

A
N

SF
E

R
S

T
R

A
N

SF
E

R
SW

H
IT

E
L

IS
T

S

USER A

USER C

USER B

ABC token
requires_whitelisting

��



5.1   WASM

We believe WebAssembly is a much greater engine for smart contract execution 
and has great scalability and support. It was developed by the W3C (World Wide 
Web Consortium) with support from companies such as Mozilla, Google and 
others. While being portable, turing complete and ef�cient, developers can write 
their smart contracts in many different programming languages such as C/C++, C#, 
Rust, Javascript, Typescript, Haxe, Kotlin and Go. 

WASM is fast, ef�cient, open, debuggable, platform-independent and memory-safe 
which makes it perfect for smart contract execution. 

5.2   CosmWasm

Since Coreum blockchain relies heavily on the Cosmos ecosystem, CosmWasm is 
the chosen platform to handle smart contracts. CosmWasm is a smart contract 
engine and an important part of Cosmos infrastructure. It is written as a module 
that can plug into the Cosmos SDK. It facilitates the execution of smart contracts 
in different chains using the Cosmos’s Inter-blockchain communication protocol.

CosmWasm is designed to be a multi-chain solution for building smart contracts 
that allow the execution of the same contract in different chains. Just by writing a 
CosmWasm contract you can run contracts on the whole Cosmos ecosystem. 

5.3   CosmWasm Architecture

CosmWasm fully embraces the actor model [8], in which messages behave in a 
�re-and-forget manner, they do not wait for any promises to be ful�lled, removing 
the danger of race conditions. Actors send messages through a message dispatcher 
as a communication mechanism.

The implementation of Actor model pattern adds the following added value:
•  Increased security: Since it prevents contracts from calling each other it 

avoids reentrancy attacks. Contracts are allowed to message each other, 
but not to be called directly.

��



•   Inter-blockchain messaging: Sending cross chain messages through the IBC 
is achievable.

•  Ease of serialization: Messages can be serializable to many different formats 
so they can be integrated with external systems.

5.4   Contract Flow

The contract lifecycle has three phases:
Upload code: Once we have compiled the binary, we upload the optimized wasm 
code, no state nor contract address exists at this stage. 
Instantiate contract: Instantiate a code reference with some initial state and 
creates the address which identi�es the contract. For example, if you were creating 
a new ERC-20 token, in this stage you would set the token name, symbol, etc.
Execute contract: Each actor has exclusive access to its own internal state. This 
may support many different calls, but they are all unprivileged; usage of previously 
instantiated contracts depends on the contract design. 

5.5   Cosmos SDK Wasm Module

The Coreum blockchain will have a custom module, which will be in charge of 
processing wasm related messages in order to upload , instantiate and execute 
smart contracts.

��



5.6   Rust Language

Although you could write WASM smart contracts in many different languages. Rust 
is the preferred language, it is ideal for generating WASM smart contracts since it 
has the capability of being memory safe, fast and producing lightweight byte-code 
for on-chain storage.

6 Decentralized Exchange (DEX)

The Decentralized Exchange is a native, built-in exchange functionality within the 
Coreum blockchain. Although by using smart contracts it is possible to achieve 
swapping or trading, Coreum aims to build this feature directly in the blockchain 
core system to allow for a low-fee, secure and fast trading activity with support for 
all modern trading features.

The DEX can facilitate trading of any issued asset as well as CORE within its func-
tion. Users of the Blockchain can choose any asset as base and quote pairs and a 
market will automatically be created for such pairs. The dex features a full 
featured native orderbook.

The decentralized exchange will be based on an on-demand orderbook, meaning it 
allows users to create orders on any possible pair. An order consists of a currency 
pair, direction, execution price, size and additional conditions for execution and 
closing.

6.1   On-Demand Orderbook

The decentralized exchange will be based on an orderbook in which users can add 
new pairs and a market will be automatically created for it. An order consists of a 
currency pair, token that the user wants to buy, execution price, size and addition-
al conditions of execution and closing. A user that created an order will be able to 
close it before it is fully executed.

��



Order example:
Pair: BTC-USD
Buy: BTC
Execution price: 30000 USD
Size: 100 BTC
Execution conditions: Fill or Kill, Good till time (1 hour)

On decentralized exchange users will be able to trade all the issued assets including 
the CORE Token and their own issued tokens.

6.2   Direct & Indirect Order Matching

In order to ful�ll and execute an order a matching order with the same or better 
price must exist in the opposite direction of the order. For example if one wants to 
buy 1 BTC for 24000 USD then there must exist opposite orders selling 1 BTC for 
24000 USD or less. This is called direct order matching. An indirect order matching 
means that orders from an intermediary pair will be used to ful�ll the order. In the 
previous example, let’s say that there does not exist an order selling 1 BTC for 
24000 USD or less but there exists 2 orders in 2 different pairs, one selling 1 CORE 
for 240 USD and another order selling 10 core for 1 BTC. These 3 orders from 3 
different pairs can be matched to ful�ll all 3 in a single execution. Coreum will 
support indirect order matching using only CORE as an intermediary asset, which 
means for each order ABC-XYZ,coreum will check ABC-CORE and CORE-XYZ to 
see if it can indirectly match the order.

6.3   Order Execution

An order will be executed only by an opposite order either directly or indirectly. 
After a user adds a new order in the order book, the system �nds the opposite order 
with a matching price which must be equal or better then the order price, and they 
match with each other. Then users receive funds in the amount calculated from 
their orders. When two orders match, they will be executed by the price of the 
order that was created earlier.

��



6.4   Order Types

Basically they are 2 main types of orders which are the backbone of any orderbook; 
market orders and limit orders. 

6.4.1     Market Orders

A market order is an order in which the order is ful�lled with the best possible 
opposite orders, regardless of their price.

6.4.2     Limit Orders

Unlike market orders, there is a price limit on which orders can be used to ful�ll the 
current order. Which means that a limit order will be ful�lled using the best possi-
ble opposite orders which are the same or better than the price speci�ed in the 
limit order.

6.5   Advanced Features

6.5.1     Good till Cancel Orders

Orders of this type will be active until the user manually closes the order or the 
order will be �lled with the opposite orders.

6.5.2     Good till Time Orders

Users can set a time limit for orders of this type. ‘Good till’ time orders can be 
executed only during the time period entered by the user. When the indicated time 
period ends, the order will be automatically closed if it was not �lled with the oppo-
site orders.

6.5.3     Immediate or Cancel Orders

Users can create an order that must be executed immediately or it will be closed. 
This order will be executed as much as there are opposite orders matching it until 
it is fully executed, or will be canceled if there are no more opposite matching 
orders. This order will not sit as a limit order in the order book.

��



��

6.5.4     Fill or Kill Orders

Order with Fill or kill conditions can be executed only entirely at a time. For orders 
of this type there can be also added a time limitation during which this order can be 
executed.

7 Decentralized Apps (dApps)

Since Coreum is using WebAssembly, it’s opening a new corridor for Decentralized 
App developers, and DeFi applications by allowing them to write smart contracts 
with their favorite programming language. 

Coreum is taking the initiative to help and grow the WASM smart contract develop-
ers community and as such has 10% of the total supply of CORE tokens designated 
for grants to developers. 

8 Use Cases

Coreum provides developers and �nancial institutions with a complete essential 
infrastructure to build any DeFi applications. Moreover, Coreum will incentivize 
quali�ed developers to build intuitive dApps. Some of the proposed use-cases of 
Coreum blockchain are:

•  Tokenized Securities (e.g. Sologenic.com)
•  Liquidity Providers (LPs) and Market Makers
•  Cross-border Payments, Banking and Remittance (e.g. Swift)
•  Stablecoin Ecosystems (e.g. USDC, USDT, …)
•  Lending Platforms (e.g. Block�, Nexo)
•  Wrapped Cryptocurrencies (e.g. ERC20, BEP20)
•  Decentralized Exchanges (e.g. Sologenic.org, UniSwap, …)
•  Metaverse Applications (e.g. Decentraland, The Sandbox, Meta)
•  NFT Marketplaces (e.g. Sologenic.org, Oopensea.io, …)
•  Gaming and Play-to-earn apps (e.g. Axie In�nity)



��

9 Token Economy

Blockchain Name       Coreum 

Token Symbol       CORE

Icon   

Initial Supply       500,000,000
   

10   Allocation

Funds   Percentage     Allocation         Proportion       Vesting Period/
              Distribution Plan

Community      70%             SOLO Community       20%      1 - 12 months
               Airdrop              Distribution Schedule

       
               CORE Community      30%      12 - 36 months 
                Airdrop              Distribution Schedule 

               Validators’         10%            Unlocked
               Rewards Pool

               Community d’Ap         10%      Unlocked
               Developers

Operation      30%             Coreum Mainte-         30%      1 - 24 months 
               nance, Operations,       Vesting Period

               Developers, Teams
               and Investors



11   References

[1] What is Tendermint
https://docs.tendermint.com/v0.35/introduction/what-is-tender-

mint.html

[2] Tendermint
https://docs.tendermint.com/v0.35/

[3] IBC Protocol
https://ibcprotocol.org/

[4] Tendermint: Consensus without Mining
https://tendermint.com/static/docs/tendermint.pdf

[5] Cosmos SDK gov module
https://docs.cosmos.network/v0.45/modules/gov/

[6] Smart contracts introduction
https://www.fon.hum.uva.nl/rob/Courses/InformationInSp
eech/CDROM/Literature/LOTwinterschool2006/szabo.best.v
wh.net/smart.contracts.html 

[7] Smart contract security
https://github.com/ethereumbook/ethereumbook/blob/deve
lop/09smart-contracts-security.asciidoc  

[8] Actors: A Model of Concurrent Computation in Distributed Systems
https://dspace.mit.edu/handle/1721.1/6952

  

��


	Disclaimer
	Abstract
	1 Architecture
	1.1 Tendermint & Cosmos SDK
	1.2 Interoperablity with Other Blockchains
	1.3 Side Chains

	2 Proof of Stake
	2.1 Staking
	2.2 Validators
	2.3 Delegating
	2.4 Transaction Fees
	2.4.1 Gas
	2.4.2 Gas Price

	2.5 Validator Rewards
	2.5.1 Reward Distribution

	2.6 Slashing

	3 Governance
	4 Token Management
	4.1 Introduction
	4.2 Architecture
	4.3 Token Properties
	4.3.1 Token Symbol
	4.3.2 Minting & Burning
	4.3.3 Whitelisting
	4.3.4 Fungible vs Non Fungible
	4.3.5 Token Freezing
	4.3.6 Precision

	4.4 Token Issuance
	4.4.1 Transactions
	4.4.2 Complete Flow Example


	5 Smart Contracts
	5.1 WASM
	5.2 CosmWasm
	5.3 CosmWasm Architecture
	5.4 Contract Flow
	5.5 Cosmos SDK Wasm Module
	5.6 Rust Language

	6 Decentralized Exchange (DEX)
	6.1 On-Demand Orderbook
	6.2 Direct & Indirect Order Matching
	6.3 Order Execution
	6.4 Order Types
	6.4.1 Market Orders
	6.4.2 Limit Orders

	6.5 Advanced Features
	6.5.1 Good till Cancel Orders
	6.5.2 Good till Time Orders
	6.5.3 Immediate or Cancel Orders
	6.5.4 Fill or Kill Orders


	7 Decentralized Apps (dApps)
	8 Use Cases
	9 Token Economy
	10 Allocation
	11 References



